— Katex — 1 min read
How to input math formulas using KaTeX
plugin.
a2+b2=c21a^2 + b^2 = c^2
eiπ+1=01e^{i\pi} + 1 = 0
s=a1+a2+⋯+an1s = a_1 + a_2 + \cdots + a_n
A0=W0,0+W0,1+W0,2+⋯+W0,n1A_0 = W_{0,0} + W_{0,1} + W_{0,2} + \cdots + W_{0,n}
y=x1y = \sqrt{x}
y=nx1y = \sqrt[n]{x}
z=yx1z = \frac{x}{y}
z=1+8yx1z = \frac{x}{1+\frac{y}{8}}
α,A1\alpha, \Alpha
α,A → \alpha, \Alpha
β,B → \beta, \Beta
γ,Γ → \gamma, \Gamma
δ,Δ → \delta, \Delta
ϵ,E,ε → \epsilon, \Epsilon, \varepsilon
ζ,Z → \zeta, \Zeta
η,H → \eta, \Eta
θ,Θ,ϑ → \theta, \Theta, \vartheta
ι,I → \iota, \Iota
κ,K → \kappa, \Kappa
λ,Λ → \lambda, \Lambda
μ,M → \mu, \Mu
ν,N → \nu, \Nu
ξ,Ξ → \xi, \Xi
o,O → o, O
π,Π,ϖ → \pi, \Pi, \varpi
ρ,P,ϱ → \rho, \Rho, \varrho
σ,Σ,ς → \sigma, \Sigma, \varsigma
τ,T → \tau, \Tau
υ,Υ → \upsilon, \Upsilon
ϕ,Φ,φ → \phi, \Phi, \varphi
χ,X → \chi, \Chi
ψ,Ψ → \psi, \Psi
ω,Ω → \omega, \Omega
(x+y) → (x+y)
[x+y] → [x+y]
{x+y} → \{x+y\}
⟨x+y⟩ → \langle x+y \rangle
∥x+y∥ → \|x+y\|
To make the parenthesis resize dynamically, put \left
and \right
before parenthesis.
\left
and \right
:F=G(r2m1m2)1F = G \left( \frac{m_1 m_2}{r^2} \right)
\left
and \right
:F=G(r2m1m2)1F = G ( \frac{m_1 m_2}{r^2} )
To manually control parenthesis size, use \big
, \Big
, \bigg
, \Bigg
.
((((,[[[[1\big( \Big( \bigg( \Bigg(,2\big[ \Big[ \bigg[ \Bigg[
i=1∑ni=2n(n+1)1\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
i=1∏ni=n!1\prod_{i=1}^{n} i = n!
\bmod
c=amodb1c = a \bmod b
\pmod
ap≡a(modp)1a^p \equiv a \pmod{p}
f′ → f'
f′′ → f''
x˙ → \dot{x}
x¨ → \ddot{x}
x^ → \hat{x}
x~ → \tilde{x}
xˉ → \bar{x}
x → \vec{x}
x+y+z1\overline{x + y + z}
x+y+z1\underline{x + y + z}
x+y+z∣A∣1\overbrace{x + y + z}^{|A|}
∣A∣x+y+z1\underbrace{x + y + z}_{|A|}
{0,1,2,…}1\{0, 1, 2, \ldots\}
1+2+⋯+n11 + 2 + \cdots + n
x1⋅x2⋅x3⋯xn1x_1 \cdot x_2 \cdot x_3 \cdots x_n
N → \mathbb{N}
Q → \mathbb{Q}
R → \mathbb{R}
Z → \mathbb{Z}
C → \mathbb{C}
∅ → \emptyset
∪ → \cup
∩ → \cap
∖ → \setminus
⊂ → \subset
⊆ → \subseteq
⊃ → \supset
⊇ → \supseteq
∈ → \in
∋ → \ni
∈/ → \notin
∀ → \forall
∃ → \exists
∄ → \nexists
≡ → \equiv
¬ → \neg
∨ → \lor
∧ → \land
AB → \overline{AB}
AB → \overrightarrow{AB}
∠A → \angle A
△ABC → \triangle ABC
□ABCD → \square{ABCD}
≅ → \cong
∼ → \sim
∥ → \|
⊥ → \perp
45∘ → 45^{\circ}
sin(θ) → \sin(\theta)
cos(θ) → \cos(\theta)
tan(θ) → \tan(\theta)
v=dtds,a=dtdv=dt2d2s1v = \frac{ds}{dt}, a = \frac{dv}{dt} = \frac{d^2 s}{dt^2}
∂t2∂2u=c2∂x2∂2u1\frac{\partial^2u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}
∫udv=uv−∫vdu1\int udv = uv - \int v du
bmatrix
for bracket, and pmatrix
for parenthesis.M(θ)=⎣⎢⎡cos(θ)sin(θ)0−sin(θ)cos(θ)0001⎦⎥⎤1M(\theta) =2\begin{bmatrix}3 \cos(\theta) & -\sin(\theta) & 0 \\4 \sin(\theta) & \cos(\theta) & 0 \\5 0 & 0 & 1 \\6\end{bmatrix}
f(x)={1,x+1,x<0x>=01f(x) =2\begin{cases}3 1, & x < 0 \\4 x + 1, & x >= 05\end{cases}